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Abstract. Based on the generalized linear quantum transformation theory, we present a new
method to exactly solve a two-dimensional time-dependent coupled quantum oscillator, and obtain
the exact formulae of the normal product form of the evolution operator, evolution matrix element,
wavefunction and expectation value of an arbitrary observable.

1. Introduction

In recent years, there has been a great deal of interest in the problem of solving the multi-
dimensional time-dependent quantum oscillator (TDQO) analytically [1-6], because of its
extensive application in various areas of physics, such as the field of experiments with
cold atoms [7, 8], the control of atoms by means of laser beams or other electric [9] and
magnetic fields [10], the quantum motion of a particle in a Paul trap [11, 12] and a quantized
electromagnetic field in a Fabryépt cavity [13]. However, there are aspects of solving
the multi-dimensional TDQO which are problematic. One difficulty is the fact that, strictly
speaking, some methods [14—-16] are not only complicated but it is also inconvenient to apply
their results to practical problems. For example, the expectation values presented in [15]
were calculated using coherent states (or particle-number states); in the Heisenberg picture,
therefore, the results cannot be used to calculate the wavefunction evolution of an arbitrary
initial state (or the expectation values). In addition, the system considered in [16] is single-
mode TDQO, which is a special (much easier) case of the system discussed in this paper.
Compared with this paper, the derivation in [16] is not only lengthy but also obscure. Also, the
time evolution operator presented in [16] is expressed as the product of three operators, which
is not convenient for calculation. In fact, no illustration was given in the mentioned references
for calculations (e.g. solving wavefunctions, expectation values, etc) in practical problems.
In this paper, we presentraal complete analytical solution in a much more concise way by
means of generalized linear quantum transformation theory (GLQT) [17-20].

GLQT universally applies to a system with constant basic operator commutator, such
as [)2,, ﬁk/iﬁ] = 8, (x; and p; are one-dimensional coordinate and momentum operators,

respectively). Sowe have the linear unitary transformatiamtwo-dimensional configuration

space,
~ (P A\ A P . A iD P .
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whereP = (p1, p2), X = (%1, %2), M is a 4x 4 complex symplectic matrix, whild, B, C
andD are 2x 2 real matrices, and the following equality is the symplectic conditioM of

- 0 I 0 I
M M= @)
-1 0 -1 0
(1 is a 2x 2 unity matrix) or

BA = BA CD=CD CA+BD =1 AC+DB =1 etc.

U can only be determined by, B, C, D up to an arbitrary constant factor, abtican be
represented in the usual exponential, normal or anti-normal product form. In this paper, we
rewrite its normal product form,

A

U=0"=

1 i1, —~% 24 PN X
cexpy= | PDCP+-P(1-C! X+XBC1X“: 3
VdetC p{ 2 [hz h ( ) )
where the notation:- - : represents normal product, for examplé? p; + p; x; : = pix2+p;%;.
For the case of TDQO, the equation of the evolution operéter
U ~p - . .
|h¥UT = H(1) U@ =1 4

whereU is a time-dependent exponential quadratic operator. The fundamental difficulty in
solving equation (4) is how to calculaa&’/ /d¢, sincel is a cluster function of non-commuting
operatorsy; andp; (I = 1, 2). Although, equation (4) has the formal solution

H t
U= fexp(—lz/ I-?(r)dr) (5)

h Jo
whereT is the time-ordering operator, the formal solution is not practical in actual calculations,
because ofl[? (1), H (t2)] # O for arbitraryr;andz,. In this paper, it is convenient to solve
equation (4) and obtain the formulae of the evolution matrix element, wavefunction and
expectation value of the observable by means of GLQT and the normal product form of the
evolution operator.

2. General theory
Now, we consider the Hamiltonian for two-dimensional coupled TDQO
N 1 .5 . 1 A PN
H(t) = 5 (5} + p) + Sme? (3 + 82) + f (pa — patu) )

wherem, w and f are time-dependent real functions.

2.1. Evolution operator

Let us take the normal product form of the evolution operdiols equation (3), then
substituting equations (3) and (6) into equation (4), and utilizing equations (1) and (2), we
obtain

BC-CB=—= ™
AC+DB = —fo
AO)=C0) =1 B(0) = D(0) =0
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(o 1) . daA
o= A=—.
-1 0 dr

Applying equation (2) to simplify equation (7), we obtain

where

A—faA:ﬁé A0) =1
m

. 2 ~
B+ fBo=-"2 X B(O) =0

" ®)
. maow< ~
C+fCo="D cO) =1
. .
D—foD=—"¢ D(0) = 0.

m

Considering the above equation, we choose the for afs

V- A ID _ aef@ idefe ©)
“\iB ¢ ] \ ipefo cefo

whereF = fO’ f(r)dr,ac+bd = 1. Then equation (9) becomes

i+ i+l =0 a0 =1 a(0)=0
m
i+ 2 i +w?d=0 d0) =0 d(0)=—L
m m(0) (10)
. . 2
Bh_ (T + 29)[7 +w?h =0 b(0) =0 h(0) = _mQe" 0
m w h

i— <@+29)(‘;+wzc=o c@=1  &0)=0.
m w
So far, we have changed the problem of solving the evolution operator into a second-order
linear ordinary differential equation. For any actual problem, on¢®, »(¢) and f(¢) are
given, we can obtain the exact solutionqyfB, C, D and further determine the normal product
form of the evolution operatdy by equation (3).

2.2. Evolution matrix elements

From equations (3) and (9), we can find the evolution matrix element between the eigenvectors
of the coordinatéX) = |x1) |x2) and momentumP) = |p1) |p2),

N 1 id _~ 5 -~ ib_ -
PlU|X) = ———eXp| — PP — —(COSF - PX +sinF - Po X))+ —XX 11
PIVIX) = 5 e p[ch i Xt o } (11)
and we can find the evolution matrix element in the coordinate representation
N 1 1 ~ ~ . ~ -
(X'|U|IX) = ——exp] =——[cX'X' —2CcoSF - X'X +2sinF - X'o X +aXX]}. (12)
2rid 2id

The matrix element of/ between the arbitrary states) and|y) is

2rid
x¢* (X') v (X) dX' dX (13)

A 1 1 ~ ~ . ~ -
(plUY) = —— exp{m[cX/X/ —2cosF - X'X+2sinF-X'oX +aXX]}
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wherep* (X') = (p|X'), ¥(X) = (X|¥), dX = dx1dx; and d¥’ = dx; dx}. Applying the
above formulae of the evolution matrix element, we can calculate the transition or scattering
probabilities.

2.3. Wavefunction

If the initial wavefunction of TDQO ig/ (X, 0) = (X|¥ (0)), then the wavefunction at arbitrary
time can be expressed as

V(X 1) = ZR2ADXX) exp[i(%aﬁ — COSF - XV +sinF - Yaf()] W (Y, 0)dY
2rid id
(14)
wherey (X, 1) = (X|U]/(0)).
2.4. The expectation value
For an arbitrary observabl@ (P, X), from equation (1) we obtain
0T0B, X)0 = Q(ﬁc +ERB. RA - %ﬁb) _ G(P. ). (15)

Therefore, the expectation value @fin state|y (1))
0(1) = (Y OIUIY®) = (Y (O)IUTQU |y (0) = G(0) (16)

equals the expectation value of observabli the initial stately (0)).
3. Applications
If the initial wavefunction is a two-dimension@aussianwavepacket, namely

V(X0 =,/ ‘S;ﬁ exp[—3 (8ixf +85x3)] a7

then the wavefunction can be obtained from equation (14),
Y (X, 1) = rexp|—3[(t1co8 F + 1 sin? F)xZ + (z1Sin’ F + 75 co F)xZ

+(12 — T1)(SIN 2F)x1x2] (18)
where
1/2
L 8182 /
| 7w (a—i82d) (a —i82d)
and
0812 —ib
T = >
a—idfd

In particular, if§; = 6, = 6, then

2
VX, 1) = le—ib xf+x§)] (19)

1)
J7 (a —i8%d) eXp|:_2a —i82d (
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It is apparent that/ (X, r) is still aGaussiarwavepacket. From equation (16), we obtain
x(1) = p)=0 (1=12

_ 2 2
X2(t) = Lcog F (;l—z + 5§d2) +1silPF (;1—2 + 5§d2>
1 2

- . a? a?
x3(t) = 3siPF <8_ + 3de> +1cosF (8_2 + 6§d2)

f 5 (20)
— 2 2
p2(t) = th%cod F <b— + 82c2> +iR%siP F (b— + 8202>
1 2 52 1 2 52 2

1 2
2 172 6ip? b? 2.2 172 002 b? 22
pZ(t) = Eh sin® F ? + 810 + ih Cos F 8_2 + (SZC

1 2

and

— = = 1 1
(AX)2(t) = x2(t) + x3(t) = 1a® (g + 5_§> + 2d? (82 +83)
— — — _ 1 1 _
(APY(1) = p2(1) + p3(1) = 5R2D? (E + %) + 172c2 (82 +52) (21)

2
(AX)?(AP)A(t) = (AX)*(AP)*(0) + 3R? [ab(;z + ;2) —cd(82 + 35)} )
1 2

It is clear that(AX)?(AP)?(t) > (AX)?(AP)?(0), and(Ax)2(r) and (Ap)2(r) (I = 1,2)
are affected by the coupled term&f¢) (see equation (6)), whilea X)2(r) and(A P)?(¢) are
not.
The crux of solving TDQO is to find the solution to equation (10). Now, we consider the
case with arbitraryf (+) and

1 1
= — S5 22
m(t) o exp(3sQ) (22)
where Q(t) = féa)(r)dr, and s is a real constant. Substituting equation (22) into

equation (10), we have

[cosh( 52 — 1Q) o sinh(JsZTl Q)] (s> 1)

sz —1
a=¢e""1 (1+5Q) (s2=1) (23)
A .
[cos( 1—52S2>+ 1—s25m( 1—s29)} (s <1)
S .
|:COSh( s2—1 )—ﬁ5|nh< s2—1 )] (s2>1)
c=€%1 (1-s5Q) (s2=1) (24)

[cos( 1_SZQ>_J1S_—S25in( l—s2§2>i| (s <1)

sinh( 52 — 152) (s> 1)

s2—1
b=-"" g0 (s?=1) (25)
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1 Siﬂh(x/ 52 — 19) (s2 > 1)

W52 —1
d=-he"’%{Q (s2=1) (26)
%Siﬂ( 1—529) (s? <1).
— S

Substituting equations (23)—(26) into equation (21), noticing t#eX)2(r) decreases in
accordance with the exponential&, if s andw > 0; otherwise, if < 0andw > 0, (AP)%(r)
decreases. Namely, the TDQO with(¢) andw(¢) satisfying equation (22) has a squeezed
effect for the initialGassianwavepacket.

The method presented in this paper is applicable for multi-dimensional coupled TDQO.
Utilizing the above results, we can conveniently change the quantum operatiorintober
operation. Specially, we can obtain exact numerical solutions for TDQO with those cases which
have no explicit expressions.
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